Dual Phase Soft Magnetic
Laminates for Low-cost,
Non/Reduced-rare-earth
Containing Electrical
Machines

GE Global Research

Annual Merit Review and Peer Evaluation June 20th, 2018

Imagination at work.

Project ID# elt090

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Timeline

- Project start date: October 2016
- Project end date: September, 2019
- Percent complete: 50%

Budget

- Total project funding: \$6,848,335
 - DOE: \$4,999,285
 - Contractor: \$1,849,050
- FY 2017 Funding
 - \$2,557,127
- FY 2018 Funding
 - \$2,226,115

Partners

- GE Global Research
- Oak Ridge National Laboratory
- UQM Technologies, Inc.
- Carpenter Technology Corporation

Barriers addressed

- Cost of Materials and Components
- Component Volume and Efficiency
- Component Weight

Targets

Parameter	Target
Peak Power (kW)	≥55
Continuous Power (kW)	≥30
Specific Power (kW/kg)	≥1.6
Power Density (kW/l)	≥5.7
Maximum Speed (rpm)	14,000
Maximum Efficiency (%)	≥96
Cost (\$/kW)	≤4.7

Relevance

- Low-cost, high-performance advanced traction motor: key enabler to meeting the 2022 EV Everywhere targets for the electric traction system
- Elimination of rare-earth permanent magnets: enhance the sustainability of the critical materials supply chain.

Electric Drive System Challenge

Advancements needed for an electric drive system to support meeting EV Everywhere targets

90% system efficiency

55kW SYSTEM COST OF \$1650

Today's electric drive systems use discrete components, silicon semiconductors, and rare earth motor magnets.

94% system efficiency

55kW SYSTEM COST OF \$440

Future systems may meet these performance targets through advancements such as fully integrating motors and electronics, wide bandgap semiconductors, and non-rare earth motors.

Relevance: Objectives

 The project goal is to demonstrate scaled-up manufacturing of the dual phase magnetic materials and demonstrate a full-scale traction motor capable of meeting these targets:

Parameter	Target
Peak Power (kW)	≥55
Continuous Power (kW)	≥30
Specific Power (kW/kg)	≥1.6
Power Density (kW/l)	≥5.7
Maximum Speed (rpm)	14,000
Maximum Efficiency (%)	≥96
Cost (\$/kW)	≤4.7

- From March 2017-March 2018, the objectives were:
 - Produce 1,000 lbs of 0.010" thick by 11" wide dual phase alloy
 - Calculate 20% increase in performance in dual phase motor design

Relevance: Barriers

Dual phase materials allow synchronous reluctance motors to have same component weight and volume and efficiency as internal permanent magnet motors

Performance – Preliminary EM design Full Scale

Parameter	Target	Calculated (48 slot design)	Remarks
Peak Power (kW)	≥55	56.2	
Continuous Power (kW)	≥30	34	
Specific Power (kW/kg)*	≥1.6	1.93	For peak power operating point
Power Density (kW/l)	≥5.7	5.86	Not including Cooling jacket
Maximum Speed (rpm)	14,000	14,000	
Maximum Efficiency (%)	≥96	95.3	Still to be optimized based on:winding design and loss datacompromise between Avg. torque and torque ripple

Relevance: Barriers

- Dual phase synchronous reluctance use no rare-earth permanent magnets
- Raw material cost is reduced by 26% (All costs in 2018 dollars.)

Active	2010	2010 Prius IPM ^{1,2}			Dual Phase Rotor SynRel			
Component	Mass (kg)	Cost	\$/kg	Mass (kg)	Cost	\$/kg		
Rotor	6.7	\$15.41	\$2.30	4.9	\$22.54	\$4.60		
Stator	10.4	\$23.92	\$2.30	13.0	\$29.90	\$2.30		
Magnets	0.8	\$61.60	\$77.00					
Copper	4.9	\$33.57	\$6.85	10.6	\$72.61	\$6.85		
Total	22.8	\$134.50	\$5.90	28.5	\$125.05	\$4.39		

[1] R. H. Staunton et al., "PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application," Table 7.2, ORNL TM-2004/217. [2] T. A. Buress et al., "Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System," Table 2.7, ORNL/TM-2010/253.

- Elimination of rare earth magnets enables 26% active material cost reduction
- Active raw material cost \$2.3/kW at 55 kW peak power, not including shaft and bearings
- Target is ≤\$4.7/kW, allowing margin for dual phase manufacturing cost uncertainty
- Cost of manufacturing components to be addressed during scale up after prototype demonstration

Approach: Milestones

Budget Period 1	Budget Period 2	Budget Period 3
FY 2017	FY 2018	FY 2019
Subscale meter design	ulate 0% orma ce	
	Full-scale motor design sc	Sub- ale otype
	subscale motor fabrication	Test f
		Materials development scal protot Full-scale motor fabrication

Go/NoGo Decision Point

Approach: Milestones

Milestones	Description	Planned Completion Date
Produce 275 kg of 20.3 cm wide by 254 μ m thick sheet	Dual phase magnetic laminate material is produced as rolled alloy sheet	3/31/17
Report nitride kinetics study and residual stress analysis on 2.5 cm by 5.0 cm coupon	Complete analysis of nitrogen diffusion into dual phase alloy	6/30/17
Complete initial market study	Determine target market and competitors	9/30/17
Detailed subscale dual phase design shows 20% greater performance than conventional rotor	Project review at end of BP 1 will review completed electromagnetic, thermal and mechanical performance of detailed subscale design	9/30/17
Nitride laminates for 13.9 cm dia. by 13.3 cm length subscale prototype.	Produce sufficient quantity nitrided 13.9 cm dia. laminates to manufacture a rotor 13.3 cm long	12/31/17
Stacked and bonded subscale rotor with 13.3 cm stack length	A stacked and bonded rotor assembly is made from the nitrided and cleaned subscale laminates	3/31/18
Report nitride kinetics study and residual stress analysis on 13.9 cm dia. subscale laminate	Complete analysis of nitrogen diffusion into nitrided laminate of subscale prototype	6/30/18

Approach: Strategy

- Electric machine designers wish for local control of magnetic permeability in rotors to increase power density and efficiency
- Reluctance-torque machines with nonmagnetic bridges and center posts show clearest benefits
- Other material solutions exist but with unfavorable balance of properties

Approach: Plan

• FY2017

- Produce 1,000 lbs of custom dual phase alloy sheet
- Measure material properties and calculate motor performance

• FY2018

- Build and demonstrate subscale motor prototype
- Improve manufacturing process to achieve better control of material properties
- Demonstrate that tested performance matches calculated performance

• FY2019

- Build 55 kW peak power dual phase SynRel prototype
- Demonstrate that dual phase SynRel motor constructed without permanent magnets can match or exceed performance of IPM motor

Cut laminates for sub-scale prototype from sheet

Custom alloy sheet

Sample size	11"x 0.5"
# of sampling locations	15
# of measurements per sampling location	3
Thickness	0.0098±0.0001

- 1,000 lbs W11"xT0.01" sheet produced to GE's spec. by Carpenter Technology Corp.
- Comprised of magnetic phase of dual phase alloy
- Met or exceeded all magnetic, chemistry, and dimensional requirements
- To be used to fabricate the rotors of both dual phase motor prototypes

Calculated subscale prototype performance

From SOPO:

Milestone	Туре	Description
Detailed subscale	Go/No Go	Project review at end of BP 1 will review
dualphase design shows		completed electromagnetic, thermal,
20% greater performance		and mechanical performance of detailed
than conventional motor		subscale design

Nitrogenation kinetics

Nitrogenated at 1,150 °C for 50 minutes

- Series of heat treatment studies on coupons at Oak Ridge National Lab
- Rate limiting step is phase transformation of ferrite to austenite
- Nitrogen was not observed to have diffused ahead of phase boundary
- Local environment in furnace has effect on nitrogen absorption rate

Residual stress analysis

Differential CTE between magnetic (α) and non-magnetic (γ) phases leads to residual stress and warping after heat treatment

Heat treated dual phase coupon

- Stress and warpage degrade magnetic permeability due to magnetostriction.
- Leads to lower than expected torque output.
- Synchrotron transmission XRD techniques being explored with ORNL to directly measure stress.

Calculated Von-Mises stress distribution

Optically measured deflection in heat treated coupon

Dual phase laminate manufacturing

As-cut single phase laminate

As-cut stack of laminates

dual phase laminate

- Sub-scale rotor laminate design completed
- 1,500 laminates produced for process development and subscale prototype
- Approximately 550-600 required for prototype rotor
- Dual phase laminates manufacturing underway

Motor development - 30 kW Full-scale prototype

Parameter	Target	Calculated
Peak Power (kW)	≥55	56.2
Continuous Power (kW)	≥30	34
Specific Power (kW/kg)*	≥1.6	1.93
Power Density (kW/l)	≥5.7	5.86
Maximum Speed (rpm)	14,000	14,000
Maximum Efficiency (%)	≥96	95.3
Cost (\$/kW)	≤4.7	tbd

30 kW Dual Phase design with nonmagnetic bridges @ 55 kW operation

- Preliminary electromagnetic design completed
- Two-layer synchronous reluctance design
- Active materials only, mass does not include cooling jacket
- Design is still to be optimized on:
 - Winding design and loss data
 - Compromise between average torque and torque ripple
- Mechanical and thermal design to be completed in 2018

Responses to previous year reviewers' comments

This project was not reviewed last year.

Collaboration and co-ordination with other institutions

- Expertise in nitriding/nitrogenation
- Measurement of nitrogenation kinetics
- X-Ray/Neutron residual stress distribution

- UQM Technologies is a sub-contractor
- Building sub-scale and full-scale prototypes
- GE is providing dual-phase rotor

- Carpenter Technology Corp. is a vendor
- Producing custom alloy dual phase sheet to GE's specification

Remaining challenges and barriers

Challenge	Mitigation plan
Ceramic mask application method used to define non-magnetic regions may not be scalable due to low rate of application	Alternate method using thermally- grown oxide under development and may be chosen to manufacture full- scale prototype
Trade-off between mechanical and magnetic properties not fully explored	DOE in process to develop processing- property relationship using scalable production methods
Assembled rotor permeability reduction due to magnetostriction	Reduce laminate warpage by optimization of motor design and laminate processing parameters

Proposed future research

FY2018

- Complete fabrication and testing of 3.7 kW sub-scale prototype
- Develop processing/property relationships for dual phase materials
- Complete full-scale prototype design

FY2019

- Produce dual phase rotor laminates for full-scale 55 kW prototype
- Manufacture full-scale 55 kW prototype
- Test full-scale 55 kW prototype

Any proposed future work is subject to change based on funding levels

Summary

- 1,000 lbs of dual phase alloy produced
- Manufacturing process control improved
- Calculated dual phase motor performance exceeds that of motor fabricated from silicon steel
- Sub-scale prototype being fabricated
- Preliminary full-scale prototype performance estimates:

Parameter	Target	Calculated (48 slot design)	Remarks
Peak Power (kW)	≥55	56.2	
Continuous Power (kW)	≥30	34	
Specific Power (kW/kg)*	≥1.6	1.93	For peak power operating point
Power Density (kW/l)	≥5.7	5.86	Not including Cooling jacket
Maximum Speed (rpm)	14,000	14,000	
Maximum Efficiency (%)	≥96	95.3	 Still to be optimized based on: winding design and loss data compromise between Avg. torque and torque ripple

Technical Back-Up Slides

Dual phase laminate advantage

(Completed on project DE-E0005573, "Alternative High-Performance Motors with Non-Rare Earth Materials", 2012-2017)

Item	Dual phase SynRel	Advanced IPM			80		
Poles	12	8					grand of the same
Layers	2	-		⋝	40	+	
Stack length	54.4 mm	30.5 mm		ž	40		
Magnet mass	0	1.14 kg		Wei	40		
Active mass	24.9 kg	23.7 kg		Ю	20		Advanced IPM
Stator OD	288 mm	326 mm					→ Dual Phase SR
Air-gap diameter	199.3 mm	193.5 mm			0	+	
Rotor ID	121.2 mm	110 mm	Target			0	5 10 15
Power Density	2.43 kW/kg	2.55 kW/kg	≥ 1.6 kW	/kg			Speed [RPM]
Peak power at TCP	60.4 kW	60.5 kW	≥ 55 kW		100		
Saliency at peak power	3.31	1.38		[%]	95		
Power at 14k	32.2 kW	33 kW	≥ 30 kW	nc	90		
Saliency at 14k	3.63	1.91		Efficiency			→ Dual Phase SR
Efficiency at TCP	93.3%	91.4%		Eŧŧ	85	+	Dy-free Spoke
Efficiency at 14k	90.3%	89.2%			80		→Specification
Phase Material for	I., "Design of Synchrono or Traction Applications,	" Proceedings of th	•		00	0	5 10 15 Speed (RPM)

Conversion Congress and Exposition, p. 4812-4819.

Dual phase soft magnetic laminates

(Completed on project DE-E0005573, "Alternative High-Performance Motors with Non-Rare Earth Materials", 2012-2017)

Cross section of interface between magnetic and non-magnetic regions

- Alloy and process developed for laminates with locally controllable magnetization
- This enables electric motors and generators with increased power density and efficiency

Non-magnetic bridges and posts patterned into motor laminate

Lithographic process used to define non-magnetic regions

Stripe domain pattern shows through non-magnetic bridges and post

Dual phase soft magnetic laminates Processing method

- The Fe-Cr-Mn alloy can be produced as fully magnetic rolled sheet (as thin as 0.010")
- A novel lithographic process is used to define the regions to be made nonmagnetic with a mask
- Heat treatment in nitrogen is used to transform the exposed regions into the non-magnetic state
- Chemical and/or mechanical methods used to remove mask

